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A GIS‑based tool for probabilistic physical 
modelling and prediction of landslides: 
GIS‑FORM landslide susceptibility analysis 
in seismic areas

Abstract  Landslide is regarded as one of the most prevalent and 
destroying geological hazards in natural terrain areas. Reliable 
landslide susceptibility analysis procedures are vital for policymak-
ers to manage the regional-scale landslide risk. In the framework 
of physically based modelling analysis, the infinite slope model is 
commonly used to assess the surficial landslide susceptibility with 
deterministically defined geotechnical and geological parameters. 
This work aims to develop a user-friendly geographic information 
system (GIS) extension tool called the GIS-FORM landslide predic-
tion toolbox using the Python programming language to consider 
the possible uncertainties in the physically based landslide sus-
ceptibility analysis in seismic areas. We implement the first-order 
reliability method (FORM) algorithm to calculate the probability 
of infinite slope failures. The proposed toolbox can produce some 
regional hazard distribution maps of different indexes, such as the 
factor of safety (FoS), reliability index (RI), and failure probability 
(Pf). Furthermore, the toolbox enables coseismic landslide dis-
placement prediction using either the direct Newmark integration 
method and/or the empirical formula method. Outputs of the GIS-
FORM landslide prediction analysis are verified using published 
data in the literature. Further, it is also successfully employed for 
landslide susceptibility analysis of the Ms 7.0 Jiuzhaigou earth-
quake in Sichuan Province, China. Without loss of generality, the 
GIS-FORM landslide prediction toolbox can serve for the rapid 
hazard mapping of earthquake-induced regional landslides where 
uncertainties in geological and geotechnical parameters should be 
considered.

Keywords  Landslides · GIS toolbox · Seismic slope stability · 
Probabilistic modelling · First order reliability method (FORM)

Introduction

Landslide is one of the most prevalent and serious sources of geo-
logical hazards prone to occur in natural terrain areas, and land-
slide disasters have extremely damaging influences on the environ-
ment and ecology (Görüm and Fidan 2021). The main triggering 
factors of landslides include the earthquake (Ji et al. 2021, 2020; 
Shinoda et al. 2019; Song et al. 2017; Tsai et al. 2019), the continuous 
rainfall (Lee et al. 2020; Park et al. 2019), the snow melting (Naudet 
et al. 2008), and some underground activities, such as mining (Chen 
et al. 2021). For landslide risk control and disaster mitigation, it is 
vital to identify the possible triggering factor distributions via a 
susceptibility analysis (Park et al. 2019). Approaches employed to 

investigate the landslide susceptibility can be classified into five 
categories (Qin et al. 2019): (1) geological hazard mapping methods, 
(2) landslide survey methods, (3) machine learning-based methods, 
(4) statistical models, and (5) physically based modelling meth-
ods incorporating the shallow slope stability analysis and relevant 
material parameters.

Among these methods of landslide susceptibility analyses, the 
methods based on machine learning and statistical models entail 
reviewing the historical event data and ignoring the intrinsic fail-
ure mechanisms and relevant physical parameters. Meanwhile, the 
physically based modelling method has been extensively applied 
lately due to its greater predictive ability and the suitability for the 
quantitative evaluation of the impact of the individual parameters 
related to landslide occurrence (Fell et al. 2008). Recently, the physi-
cally based modelling method has been easily embedded into the 
geographic information system (GIS) to implement the landslide 
susceptibility analysis involving broad areas in the framework of 
the grid-based structure feature (Sorbino et al. 2010). For example, 
the method is commonly used to investigate the rainfall-triggered 
shallow landslides considering the influence of hydrostatic rise and 
pore water pressure increases caused by rainfall infiltration. Nota-
bly, the physically based modelling approach is frequently coupled 
with slope stability models (the infinite slope) and hydrological 
models (Lee and Park 2015).

Acquisition of detailed geotechnical parameters is a necessity 
for accurate landslide susceptibility analysis in the framework of 
physically based models. Nevertheless, for a regional scale landslide 
prediction, it is generally arduous to identify the actual slope angle, 
the thickness of the soil layer, and the groundwater level (Juang 
et al. 2019). Thus, physically based models are inevitably limited by 
some hypotheses and restrictions and various sources of uncertain-
ties from accurate geological hazard assessments. Recently, some 
physically based landslide susceptibility models, such as SHALSTAB 
(Dietrich et al. 2001; König et al. 2019), TRIGRS (Baum et al. 2002; 
Weidner et al. 2018), and tRIBS (Arnone et al. 2011), and methods 
incorporating the probabilistic analysis (Lee and Park 2015; Park 
et al. 2019) have been proposed. Further, the probabilistic physical 
modelling approach can handle the internal uncertainties associated 
with the underlying slope stability models and material properties 
(Escobar-Wolf et al. 2021; Park et al. 2019). For example, the infinite 
slope model with the Monte Carlo simulation (MCS) approach was 
adopted in the computer programme developed by Hammond 
(1992). Considering the computational burdens of MCS, fast reli-
ability methods, such as the first-order second-moment (FOSM), 
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were introduced and even implemented as a software package in  
GIS. The principle is to propagate the uncertainties of input param-
eters (variance or standard deviation of the variables) to predict the 
probability of shallow landslides (Haneberg 2007, 2004). Escobar- 
Wolf et al. (2021) noted that the users must pre-process these probabil-
istic analysis files with the ASCII format and post-process the outputs 
to analyse them in the GIS environment following Haneberg. Hence, a 
GIS-based toolbox of the PISA-m algorithm was developed and imple-
mented in the ArcPy environment. Notably, in the engineering reliability  
community, FOSM as a tool for probabilistic analysis is limited by  
ignoring the statistical distributions of and correlations between 
random variables, which can result in significant estimation errors 
(Ditlevsen 1973). Accordingly, the FOSM is gradually replaced by 
the first-order reliability method (FORM) (Low and Tang 2007)  
that can overcome these limits. So far, nevertheless, there has been 
little discussion about considering the FORM reliability algorithm in 
applying for the hazard mapping assessment of regional slopes. This 
is perhaps because FORM usually involves more computational effort 
than FOSM. Therefore, implementing FORM in GIS is regarded as  
a challenging work that has never been reported in the literature.

It is worth pointing out that the recursive algorithm of FORM 
called the HLRF_x approach of fast convergence ability (Ji and 
Kodikara 2015; Ji et al. 2018) makes it possible to implement the 
probabilistic physical modelling of landslides in GIS. As a result, 
this study focuses on developing an effective tool called the ‘GIS-
FORM landslide prediction’, which is written in Python language, 
running as an extension of the ArcGIS 10.6 software to automati-
cally perform the landslide susceptibility analysis in seismic areas. 
The GIS toolbox can account for complete uncertainty information 
associated with the physically based model and can carry out the 
regional seismic landslide assessment based on the calculated slope 
displacement.

Methodology

Infinite slope stability model for shallow landslide prediction

The physically based landslide analysis is frequently related 
to the earth slope stability model by evaluating the forces 
applied to the slope. The failure surfaces of rainfall-induced or 

seismic-induced natural landslides are generally shallow (upper 
few metres) (Jibson et al. 2000; Khazai and Sitar 2004; Okada 
and Konishi 2019). The infinite slope model (Fig. 1) is regarded 
as an extremely helpful model for shallow landslide prediction 
on the regional scale, including the terrain inclination, soil char-
acteristics (strength, weight, and depth), water table level, and 
even vegetation coverage (Escobar-Wolf et al. 2021). The infinite 
slope model can analytically characterise the factor of safety 
(FoS) concerning slope stability.

As shown in Fig. 1a, the FoS calculated by the infinite slope model 
is the ratio of the average shear strength of the soil to the average 
shear stress developed along the potential failure surface based on 
the framework of the limit equilibrium analysis. The model can be 
easily extended to consider the influence of the water table (above 
the sliding plane) and the impacts of the vegetation, including the 
added weight of trees and increased strength from root cohesion 
(Escobar-Wolf et al. 2021; Hammond 1992). The corresponding FoS 
can be expressed as follows:

where Cr denotes the contribution of roots to the cohesive soil 
strength, Cs denotes the cohesive soil strength, ϕ denotes the soil 
internal friction angle, qt denotes the vegetation weight added to 
the slope, γm denotes the unsaturated (above the phreatic sur-
face) soil unit weight, γs denotes the saturated soil unit weight, γw 
denotes the water unit weight (9.81kN/m3), D denotes the depth 
of the slip depth, Hw denotes the pore water pressure ratio, and β 
denotes the terrain inclination (slope).

Seismic displacement prediction model

For the seismic condition, regional landslide susceptibility analysis 
usually requires further simplifying the infinite slope model with 
focused geotechnical parameters (Jibson et al. 2000; Shinoda et al. 
2019). As shown in Fig. 1(b), assuming that the unit weight of a shal-
low landslide soil layer does not change with the saturation (i.e., 
�m ≈ �s ) and the vegetation contribution is ignored from stability 
analysis, Eq. 1 can be simplified as:

(1)

FoS =
Cr + Cs + [qt + �m(D −HwD) + (�s − �w)HwD] ⋅ cos

2� ⋅ tan�[
qt + �m(D −HwD) + �sHwD

]
sin� ⋅ cos�

Fig. 1   The infinite slope model: (a) Hammond model, (b) simplified model
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Furthermore, seismic stability analysis can be carried out using 
the Newmark displacement method (Newmark 1965). The critical 
acceleration (ac) defining the initial movement of landslide is sim-
ply given by the following:

where g is the gravity acceleration, FoS is the static factor of safety 
given by Eq. 2, and α denotes the slope inclination.

After obtaining the ac, the accumulative displacement in the 
seismic shaking period of the landslide can be cheaply computed 
using Newmark’s ground acceleration integration. However, in the 
regional-scale seismic hazard assessment, applying the Newmark 
displacement method is still time-consuming and labour-intensive. 
Thus, empirical formulas/models are employed for regional-scale 
seismic displacement prediction (Du and Wang 2016; Jibson et al. 
2000; Song et al. 2017, 2021). We considered both Newmark’s two-
stage integration method and Jibson’s (2007) logarithmic for-
mula model to facilitate the coseismic landslide prediction in our 
toolbox.

Probabilistic stability prediction model using FORM

FORM is a semi-probability calculation method that is well-known 
in geotechnical engineering failure analysis. Given the physical 
model describing the performance of slope stability, it can quickly 
calculate the probability of failure (i.e., the landslide susceptibil-
ity) using the marginal distribution statistics of input parameters 
with uncertainty (Hasofer and Lind 1974). The fundamental con-
cept of the FORM probabilistic calculation is to find the reliability 
index (RI) (Low and Tang 2007), which represents the minimum 
distance from the vector of mean values (MV) to the vector of the 
most probable point of failure (MPP). In this work, we adopt the 
recursive algorithm proposed by Ji and Kodikara (2015) and Ji et al. 
(2019b) to implement the FORM calculation procedure into GIS. In 
brief, the recursive algorithm for locating the MPP in the space of 
random variables defined by vector x (x-space) is written as follows:

where Tk =
[
�N
k

]T
R
[
�N
k

]
 is the transformation matrix, �k is the  

vector of random variables in x-space, and �N

k
 is the vector of equiva-

lent normal MV for converting random variables into u-space. Fur-

ther, the diagonal matrix 
�
�N
k

�
=

⎡
⎢⎢⎣

�N
k,1

⋯ 0

⋮ �N
k,n

⋮

0 ⋯ �N
k,m

⎤⎥⎥⎦
 with �N

k,i
 is the equiva-

lent normal standard deviation of the ith random variables evaluated 
at xk, and R is the correlation matrix of all random variables.

At the converged MPP, the RI = βf following Low and Tang (2007) 
can be calculated as follows:

(2)FoS =
Cs

�sDsin� ⋅ cos�
+

tan�

tan�
−

�wHw ⋅ tan�

�stan�

(3)ac = (FoS − 1)g ⋅ sin�

(4)

logDJibson = 0.215 + log

[(
1 −

a
c

amax

)2.341(
1 −

a
c

amax

)−1.348
]
± 0.510

(5)

xk+1 = �N

k
+

1

∇g(xk)
TTk∇g(xk)

[
∇g(xk)

T
(
xk − �N

k

)
− g(xk)

]
Tk∇g(xk)

where x∗
i
 denotes the MPP component value of the ith variable 

evaluated in x-space and uN
i

 and �N
i

 denote the equivalent normal 
mean and standard deviation of the ith variable, respectively. Fur-
ther, R is the correlation matrix and uN

i
 and �N

i
 can be obtained by 

the Rackwitz-Fiessler transformation (Rackwitz and Flessler 1978).
The corresponding failure probability Pf is calculated as follows:

where Φ(⋅) denotes the standard normal cumulative distribution 
function.

GIS‑FORM landslide prediction toolbox: conceptual architecture

Different from FOSM for direct uncertainty propagation calculations 
in the GIS platform (Escobar-Wolf et al. 2021; Park et al. 2019), several 
iterations are needed to compute the RI using the FORM with the 
HLRF_x algorithm. In GIS-related software for the geospatial analy-
sis, such as ArcGIS, implementing the iterative algorithm through the 
ordinary grid calculation is extremely complicated without the help 
of external tools. Additionally, the dataset analysis of topographic 
and geomorphological parameters is time-consuming and labour-
intensive since they must be multiple data interactive using the geo-
spatial technology on different platforms (Rahmati et al. 2019). In this 
paper, we first propose an effective computation framework built in 
the Python environment to eliminate the aforementioned limitations. 
In short, our Python-based GIS-FORM landslide prediction toolbox 
was developed in ArcGIS and could run as an extension of the Arc-
GIS 10.6 @ESRI software. The design, development, and conceptual 
architecture of the toolbox are introduced next.

The design of the GIS-FORM landslide prediction toolbox is 
mainly divided into four parts:

1.	 Generating required files to create a geospatial dataset (i.e., the 
input);

2.	 Selecting the calculation method and model;
3.	 Automatically implementing the calculation based on ArcPy;
4.	 Generating the hazard assessment maps in the form of raster 

layers (i.e., the output).

Additionally, the graphical user interface is extremely significant 
in model designing, which permits users to modify some significant 
parameters and the computational model based on accessible maps 
(Rahmati et al. 2018). The entire methodology is illustrated in two 
flowcharts: the corresponding workflow of the toolbox (Fig. 2a) and 
the iteration process of the HLRF_x reliability algorithm used in 
the toolbox (Fig. 2b). The user interface is displayed in Fig. 3, and 
the use of this toolbox will be subsequently described in detail.

GIS‑FORM landslide prediction toolbox: input options

The prescribed file formats provide input parameters to the options 
of the GIS-FORM landslide prediction toolbox, as shown in Fig. 3, 

(6)�f =
√
n∗TR−1n∗ =

��
xi

∗ − ui
N

�N
i

�T
R−1

�
xi

∗ − ui
N

�N
i

�

(7)Pf = Φ
(
−�f

)
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Fig. 2   Schematics of the toolbox and methodology: (a) workflow of the toolbox; (b) the HLRF_x algorithm

Fig. 3   User interface of GIS-FORM landslide prediction toolbox (GUI)
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to facilitate a user-friendly application. The inputs to the principal 
calculation elements are a digital elevation model (DEM) in the  
raster format, an ESRI shapefile with the spatial distribution of soil 
types, an ESRI shapefile with the spatial distribution of vegetation  
types, and the data file with the statistical information of geological  
parameters (e.g.,.csv), including the parameters of soil and vegeta-
tion, respectively. Meanwhile, the vegetation-relevant input files are  
optional in our Python-based toolbox. Additionally, we provide the 
option of importing the statistical parameters’ correlation coefficient 
matrix, R, with the form of the.csv file. Some other additional inputs 
include the minimum value of slope worthy of stability analysis and the 
DEM standard deviation value (following Haneberg (2007) and Escobar- 
Wolf et al. (2021)).

Similarly, the options to input the GIS mapping distribution 
parameters through the.csv files (i.e., soils.csv and vegetation.csv) 
are analogous to the operational approach implemented in GIS-
TISSA (Escobar-Wolf et al. 2021). When the soil and vegetation 
(if needed) distribution areas are input in the form of a.shp file, 
these shapefiles must conclude polygons with an attribute filed 
name ‘Unit’ precisely matching the unit name of the input.csv file. 
Both.csv files should be prepared with the required format, includ-
ing seven columns, each with different rows according to the soil 
or vegetation (if needed) properties. Similarly, the first column is 
set as ‘Unit’, and it covers the names of all the soil and vegetation 
units. The second column is specified as ‘param’, and it includes the 
parameter names of soil, such as Cs, γm, γsat, γw, D, and Hw, or the 
parameter names of vegetation, for instance, Cr and qt. The third 
column represents the probability distribution name for each vari-
able whose header is called ‘dist’. The fourth to seventh columns are 
the parameter values of the corresponding probability distribution, 
and the headers are called ‘stat1’, ‘stat2’, ‘stat3’, and ‘stat4’, respec-
tively. The statistic values are assigned to the columns marked as 
‘stat1’ and ‘stat2’, respectively, when a variable conforms to two-
parameter statistical distributions, such as the normal or lognormal 
distribution. The zero value is filled in the columns named ‘stat3’ 
and ‘stat4’. Parameters for 10 common types of probability distribu-
tions are listed in Table 1 (Ji and Kodikara 2015).

GIS‑FORM landslide prediction toolbox: calculation methods and 
models

Note that the terrain inclination is one of the most basic indexes 
in geospatial analysis. Selecting the calculation method for deter-
mining the terrain inclination of the interested region includes 
two algorithms following Haneberg (2007) and Escobar-Wolf et al. 
(2021), namely the PISA-m and ArcMap algorithm. If the PISA-m 
slope algorithm is employed, the slope and its corresponding stand-
ard deviation are obtained using a four-neighbour-pixels method. 
In contrast, if the standard ArcMap algorithm is chosen, the eight-
point-neighbour-pixels method based on ArcMap Spatial Analyst 
is applied to calculate the terrain inclination.

Furthermore, as described in the physical model, the toolbox 
developed in this paper considers Hammond’s infinite slope model 
(as defined in Eq. 1) as well as the universal infinite slope model (as 
defined in Eq. 2) without considering the influence of vegetation. 
This is why we designed our GIS-FORM toolbox as the optional way 
when importing a file of vegetation. The users can choose freely 
from the two-calculation model by the drop-down option provided.

The remaining option is to select whether or not to implement the 
seismic slope disaster assessment. Notably, two distinct input modes 
are provided, and two options in the GIS-FORM landslide prediction 
toolbox are set to facilitate the free use of ground acceleration infor-
mation (i.e., the ground acceleration is inputted as a.csv file format, 
and the peak ground acceleration [PGA] distribution is inputted 
as.shp file format). Then, seismic displacement can be calculated by 
combining the imported acceleration and FoS at each pixel. Finally, 
we provide an option to compare the calculated results between the 
FORM with the HLRF_x algorithm and the FOSM.

GIS‑FORM landslide prediction toolbox: automatic calculation 
process and output results

After forming the geospatial dataset and selecting the calculation 
method and model, the Python-based toolbox starts grid sampling 
and calculating these contents, which is required by the geological 
hazard assessment. The assessment contains FoS, ac and seismic dis-
placement (Dn) (if the seismic stability analysis is chosen), and the  
probabilistic analysis based on the HLRF_x algorithm GIS-base. Spe-
cifically, the DEM raster file is used to determine the pixel size and  
geographic extent for calculation. A series of zero-valued raster files 
are produced and assigned with the parameter value. Meanwhile, the 
shapefiles are also converted to raster format in the operation of the 
dataset with another populated raster. The first step, which is called  
the ‘grid sampling and dataset process’, is completed automatically 
based on the developed toolbox, as shown in Fig. 2a. In the GIS-
TISSA toolbox, although the procedure is implemented in Python-
based GIS (i.e., ArcPy), it is still based on the conventional operation 
between raster layers, which does not involve any iterative computa-
tion process by its FOSM algorithm. Nevertheless, we fully employ 
Python to process the raster dataset in this study, mainly includ-
ing soil cohesion, soil friction, slip depth, slope angle, unit weight, 
groundwater, the ratio of saturation, roots cohesion and vegetation 
weight (if needed). These raster layers are converted to large-scale 
arrays, respectively. The Python-based mathematical calculations 
are launched by extracting the given values on the corresponding 

Table 1   Definition of probability distribution and associated param-
eters

Dist Stat1 Stat2 Stat3 Stat4

Normal Mean StDev

Lognormal Mean StDev

ExtValue1 Mean StDev

Uniform 1 1 Min Max

Exponential Mean

Gamma α λ

Weibull α λ

Triangular Min Mode Max

BetaDist α λ Min Max

PERTDist Min Mode Max
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position elements in different arrays. Therefore, the FoS of each  
location point can be estimated according to Eq. 1 or Eq. 2. If the seis-
mic analysis is selected, the ac and Dn are obtained according to Eq.  
3 and Eq. 4 of every pixel point. Additionally, we develop an effective 
RI calculation framework using an iterative loop. Figure 2b dem-
onstrates the automatic procedure employed in finding the final RI 
involving the HLRF_x algorithm. Subsequently, the Pf of each array 
element is estimated. Notably, these different calculating results are 
stored on different arrays and are written automatically to raster  
files in the GIS-FORM landslide prediction toolbox.

Finally, the main results in the form of raster layers are dis-
played, and a rapid geological hazard assessment is performed. In 
other words, the FoS layer, RI layer, Pf layer, ac layer (in the seismic 
module), and the Dn layer can all be produced automatically.

Comparison between GIS‑FORM landslide prediction 
and GIS‑TISSA

We first compare the raster files of output results between the pro-
posed GIS-FORM landslide prediction tool and the GIS-TISSA toolbox 
reported by Escobar-Wolf et al. (2021). For a consistent comparison,  
the example dataset provided by Escobar-Wolf et al. (2021) is compiled  
into our proposed GIS-FORM tool to verify that the computation 
codes in our toolbox are accurate and calculations are correctly 
carried out. The Hammond model is used to evaluate the stabil-
ity of regional-scale slopes according to the physical parameters 
given by the example dataset as shown in Tables 2 and 3. Further, 
the eight-neighbour-pixels approach (ArcMap algorithm) used in 
GIS-TISSA to estimate the slope was employed as the slope calcula-
tion option in the GIS-FORM landslide prediction to guarantee that 
both toolboxes implement the same type of computations. After 
fully inputting the dataset, the GIS-FORM landslide prediction tool-
box automatically conducts a regional disaster assessment, at a cost 
of about 15 min 53 s in our desktop computational facility.

The relevant raster files within the geodatabase obtained based 
on the GIS-FORM landslide prediction toolbox were used to com-
pare with the calculation results of the GIS-TISSA. The FoS raster 
files as the output based on the two algorithms, respectively, for 
example, are called ‘FOS_GIS-TISSA’ and the ‘FOS_GIS-FORM’. 
Note that FoS = 1 is generally set as the threshold for the landslide 
prediction. The level of safety areas is divided into three intervals, 

namely [1.00,1.25], [1.25,1.5], and larger than 1.50 following previ-
ous studies (Escobar-Wolf et al. 2021). Figure 4a–b present the FoS 
maps using the GIS-TISSA and GIS-FORM landslide prediction 
toolboxes. The extremely good agreement (within the 10−5 relative 
error in terms of FoS) implies that the fundamental calculation 
pattern of the GIS-FORM landslide prediction toolbox is validated. 
Moreover, users are allowed to consider seismic hazard predictions 
using Newmark’s concept of critical acceleration, as discussed 
before (Jibson 2007). The mean critical acceleration of each pixel 
can be calculated after obtaining the FoS and is written as output 
rasters automatically based on Eq. 3 (called ‘ac_GIS-TISSA’ and the 
‘ac_GIS-FORM’). The distributions of ac estimated through the two 
algorithms are also in good agreement with each other in the study 
area, as shown in Fig. 4c–d.

Apart from the fact that the two toolboxes obtain almost the 
same results of the FoS distributions, there are obvious differ-
ences in the relevant probabilistic hazard predictions reflecting  
various parameter uncertainties, as shown in Fig. 5. This is mainly 
due to the distinctive computing strategies of the two algorithms 
embedded in each of them. As mentioned earlier, the final RI by the 
GIS-FORM toolbox is obtained using the iterative HLRF_x algorithm  
according to Eqs. 5 and 6. However, the RI in GIS-TISSA is simply 
estimated by RI = (μFoS − 1)/σFoS, which cannot consider the com-
plete probability distribution information of random variables. 
Figure 5e–f show two maps of the Pf distribution given by GIS-
TISSA and GIS-FORM, respectively, when uncorrelated normal 
random variables were employed. The differences between the 
GIS-TISSA and the GIS-FORM landslide predictions are relatively 

Table 2   Mean and standard 
deviation of the soil property 
(adapted from Escobar-Wolf 
et al. 2021)

Soil type Type 1 Type 2

Distribution Type Normal Normal

Property Mean Standard 
deviation

Mean Standard 
deviation

Internal friction (degrees): ϕ 33 0.81 32 0.81

Soil cohesion (N/m2): Cs 5500 42 10,000 39

Saturated unit weight (N/m2): γm 21,500 22 20,000 26

Unsaturated unit weight(N/m2): γs 180,000 25 16,500 32

Depth (m): D 2 0.5 1.7 0.4

Ratio of D that is saturated: Hw 0.5 0.1 1.0 0.05

Table 3   Mean and standard deviation of the tree property (adapted 
from Escobar-Wolf et al. 2021)

Tree type Type 1 Type 2

Distribution Type Normal Normal

Property Mean Standard 
deviation

Mean Standard 
deviation

Root cohesion (N/m2): Cr 2300 26 5000 50

Surcharge(N/m2): qt 240 4 1100 17
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small, with the maximum Pf differing by 5.1%. This implies that the 
GIS-FORM landslide prediction results would bring about some-
what conservative assessments of landslide susceptibility. Note that 
the fundamental statistical information subject to multiple ran-
dom variables cannot be considered comprehensively, especially 
the cross-correlation when performing the landslide sensitivity 

analysis adopting the GIS-TISSA. However, those important sta-
tistical information can be completely modelled in the GIS-FORM 
toolbox. For instance, Fig. 5c, d, g, h shows the RI and correspond-
ing Pf maps calculated by the GIS-TISSA and GIS-FORM respec-
tively when the parameters of soil and vegetation obey correlated 
non-normal distribution.

Fig. 4   Maps of the calculation results: (a) FoS of GIS-TISSA and (b) FoS of GIS-FORM, and (c) ac of GIS-TISSA and (d) ac of GIS-FORM

Fig. 5   Maps of calculation results: RI (a) GIS-TISSA (uncorrelated nor-
mals), (b) GIS-FORM (uncorrelated normals), (c) GIS-TISSA (correlated 
non-normals), (d) GIS-FORM (correlated non-normals), and Pf (e) GIS-

TISSA (uncorrelated normals), (f) GIS-FORM (uncorrelated normals), 
(g) GIS-TISSA (correlated non-normals), and (h) GIS-FORM (correlated 
non-normals)
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Alternatively, we further consider using the failure probability ras-
ter to display the risk level under different threshold ranges, as shown 
in Fig. 6. The probability raster includes the stable areas with 5%, 10%, 
25%, 50%, and 90%, respectively. Correspondingly, the failure areas 
(percentage) decrease dramatically with the increase of the failure 
probability threshold with nonlinear form, as described in Fig. 6f. 
Notably, the failure region given by GIS-TISSA is generally larger 
than the results obtained by the GIS-FORM landslide prediction, 
and the absolute error decreases from 2.6 to 0.30%. It is reasonable 
because different reliability algorithms were implemented and show 
again that the results obtained by GIS-FORM are more conservative.

Rapid landslide susceptibility assessment: a real case study

Basic geospatial dataset

Herein, a representative real case study was carried out to vali-
date the performance of the GIS-FORM landslide prediction. 
The research region is located in the Jiuzhaigou county, northern 
Sichuan province. On 8 August 2017, a magnitude Ms 7.0 earthquake 
struck the region and triggered plentiful coseismic landslides. 
These landslides were primarily shallow rock slides and rockfalls 
following the field survey by Fan et al. (2018). Therefore, it is nec-
essary to rapidly assess the seismic landslide susceptibility in this 
area for managing the seismic disaster.

First, the geospatial dataset should be established. A 12.5-m DEM 
(https://​search.​asf.​alaska.​edu/) of the study area with 681 landslide 
polygons as reported by Yi et al. (2020) was employed and shown 
in Fig. 7a.

Furthermore, the PGA is recognised as a necessary dynamic fac-
tor when evaluating the coseismic landslides. The shakemap (PGA 
distribution map) was downloaded from the USGS (https://​www.​
usgs.​gov/​natur​al-​hazar​ds/​earth​quake-​hazar​ds/​earth​quakes), as 
shown in Fig. 7c. Additionally, the primary geological information 
is also used to evaluate the seismic slope stability to determine the 
occurrence potential of landslides. Lithology portrays the engineer-
ing geological properties associated with landslide occurrence and 
is applied for estimating the surficial soil properties. The study area 
was mainly split into four lithologic units, as shown in Fig. 7b. These 
were (1) Permian (P), limestone, dolomite, and dolomitic limestone; 
(2) Carboniferous (C), limestone and limestone intercalated dolo-
mite; (3) Triassic (T), green-grey metamorphic tuffaceous sand-
stone and siltstone; and (4) Devonian (D), organic limestone and 
layered dolomite (Chen et al. 2020; Fan et al. 2018; Yi et al. 2020). 
The accurate surficial soil strength parameters are crucial for deter-
mining the slope’s stability. However, obtaining the actual param-
eters across such a vast region is impractical (Chen et al. 2020) and 
outside the scope of this work. Generally, several various sources 
are employed to establish the typical strength parameters of the 
rocks. They include (1) geological reconnaissance report of research 

Fig. 6   Failure probability maps with the threshold increasing
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areas, (2) recommended values from experienced engineers, and 
(3) the parametric back analyses according to installed sensors 
and ground monitoring stations (Qin et al. 2019). As a result, a set 
of typical shear strength parameters is utilised for each geologic 
unit. The bedrock in the study area was divided into three catego-
ries and the corresponding physical properties are presented in 
Table 4 (Chen et al. 2019).

Note that the major influencing variables of slope stability are 
surficial soil strength properties, slope inclination, and soil satu-
ration. Specifically, the variation of soil saturation is attributed 
to rainfall or seasonal change, and it is disregarded in the study  
(i.e., Hw = 0).  Moreover, field investigation reveals that coseis-
mic landslides are generally shallow slope failures. Hence, the 

Fig. 7   Case study area (landslides adapted from Yi et al. (2020)): (a) elevation, (b) lithology map, and (c) PGA map

Table 4   Physical properties of surficial soils assigned to areas of different bedrock types in the study region

Properties Bedrock type Stratum (lithology) COV Mean 
value 
( �)

Standard 
deviation

Unit weight (γ, kN/
m3)

I (hard rock) Permian (limestone, dolomite 
and dolomitic limestone)

0.05, 0.10, 0.20, 0.30 27 � = � ⋅ COV

II (moderately hard rock) Carboniferous (limestone 
and limestone intercalated 
dolomite), Triassic (green-grey 
metamorphic tuffaceous sand-
stone and siltstone)

25

III (soft rock) Devonian (organic limestone and 
layered dolomite)

22

Cohesion (c, kN/m3) I Permian 35

II Carboniferous, Triassic 27

III Devonian 20

Friction angle (ϕ, °) I Permian 40

II Carboniferous, Triassic 35

III Devonian 22
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slope-normal failure slab thickness is considered to be 2.0 m, fol-
lowing Chen et al. (2020).

Note that the landslide factors can be summarised into three 
types: seismic, terrain, and geologic conditions (Fan et al. 2018; Xu 
et al. 2013). Nevertheless, the focus of this study is on the feasibility 
of using the GIS-FORM landslide prediction toolbox to verify the 
predicted landslides rather than considering more factors to reveal 
the mechanism of coseismic-induced landslides. Hence, the PGA 
was chosen to represent the seismic influence. Three terrain fac-
tors including the terrain inclination, the elevation and the slope 
aspect were selected. At last, the lithology was chosen to describe 
the geological condition.

Calculation results and analysis

Deterministic analysis

After entering the required files into the GIS-FORM landslide 
prediction toolbox, a series of visualised geohazard maps will be 
obtained. Generally, the FoS can play a direct feedback role in the 
distribution of landslides. Figure 8a shows the overall FoS map cal-
culated by Eq. 2. The statistical analysis was implemented to ana-
lyse and compare the accuracy between the predicted landslides by 
the GIS-FORM toolbox and the actual landslides subjected to field 
observation. First, the study region was deterministically divided 
into safety (FoS ≥ 1.0) and unsafety regions (FoS < 1.0). Then, the 
observed landslides were used as a reference for comparison. The 

distribution of landslides with seismic, terrain and geologic factors 
are demonstrated in Fig. 9.

The mainshock PGA in the research area was between 0.16 g 
and 0.26 g, as shown in Fig. 9a. Note that the predicted percent-
age of landslides based on FoS method increases with the PGA 
value, which is consistent with the observed coseismic landslide 
percentage. Figure 9b shows that most predicted landslide rasters  
based on FoS lie in the areas with slope inclination between 30° 
and 60°(unsafety region, red bars), which is similar to the observed 
coseismic landslides—with the slope ranging from 30° to 55° (Fan 
et al. 2018). Figure 9c on the other hand shows that the possible 
landslide raster area keeps increasing and reaches the peak at 
3,400 m of elevation without considering the seismic with approxi-
mately the same trend as the observed landslides. Figure 9e shows  
that the dominant slope aspects affecting slope stability are mainly 
the east (E, 67.5° ~ 112.5°) and west-south (W-S: 202.5° ~ 247.5°).  
Additionally, Fig.  9d shows the influence of geological condi-
tions (Lithology) in assessing regional landslide potentials. Most land-
slides occurred in Carboniferous under the actual situation accounting 
for 79.7% of the total landslide area. However, most predicted land-
slides appeared in Carboniferous and Devonian, especially the latter  
occupying 77.2% of the total area.

It is also worth pointing out that the unstable region predicted 
based on the deterministic FoS method generally compares well 
with the observed coseismic landslide percentage area (dotted 
line) when the slope and/or elevation is small. On the contrary, the  
predictions gradually deviate and significantly over-estimate the 

Fig. 8   Calculated results of GIS-FORM landslide prediction toolbox: (a) FoS, (b) PGA-ac, and (c) Dn
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landslide area with the increase of the slope and/or elevation, of 
which the trends are shown in Figs. 8, 9b, c. The main reason is 
that the deterministic FoS results adopted only the mean val-
ues of model parameters at many different locations, which are 
unlikely to be true in nature. Therefore, the adverse outcome is 
terrains with high values of slope/elevation (which are propor-
tionally contributing factors to FoS) are prone to landslide, while 
many uncertainty factors that could reduce the abovementioned 

contributions are completely neglected from the FoS analysis. To 
overcome these limitations, more improved prediction consistency in the 
framework of probabilistic analysis will be given in the next section.

The seismic displacement, Dn, is regarded as a significant 
index feasible for determining the coseismic landslide initiation. 
The study area is divided into four susceptibility levels based on 
the threshold of Dn, according to the California Geological Survey 
(CGS) (Shinoda et al. 2019): (1) susceptibility level I (very low): 

Fig. 9   Comparison of predicted and actual landslides occurrence under different controlling factors based on the criterion of static FoS: (a) 
PGA, (b) slope, (c) elevation, (d) lithology, and (e) aspect

Landslides 19 & (2022) 2223



Technical Note

Dn < 5 cm; (2) susceptibility level II (low): 5 cm ≤ Dn < 15 cm; (3) 
susceptibility level III (moderate): 15 cm ≤ Dn < 30 cm; and (4) 
susceptibility level IV (high): 30 cm ≤ Dn.

The seismic displacement of the region slopes is calculated by 
using Eq. 4, as displayed in Fig. 8c. Most of the landslides predicted 
under seismic action occur in the medium- and high-susceptibility 
levels and have a good agreement with the field survey landslides.

The statistical analysis is used again to investigate the ration-
ality of landslide prediction results based on the seismic, terrain, 
and geologic factors. For comparison, the absolute error (the dot-
ted line) was employed to characterise the difference between the 
predicted and observed landslides and was counted according to 
different susceptibility levels. As shown in Fig. 10, almost all areas-
errors show a quick decrease of fluctuation when the susceptibility 
level of Dn increases, regardless of the landslide influence factors. 
This also indicates landslides occurred in moderate- and high-sus-
ceptibility level areas (e.g., when Dn ≥ 15 cm). Note that the relatively 
minimal error (green dotted line) subjected to moderate suscepti-
bility level was displayed between the predicted and observed land-
slides regardless of the kind of landslide influence factors in the sta-
tistical chart. This indicates that the landslides occurred when the 

slope’s seismic displacement within the earthquake zone reached 
15 cm. The feasibility of using the seismic module of the GIS-FORM 
landslide prediction toolbox to predict coseismic landslides has 
been further demonstrated herein. Actually, the abovementioned 
conclusions are straightforwardly resulted from deterministic-FoS 
analysis. However, Shinoda et al. (2019) proposed that the criteria 
can be affected by many sources of uncertainties in geomaterial 
properties, landslide failure mode and scale, and seismic waves. The 
work below will be extended to probabilistic modelling analysis.

Probabilistic analysis

Different from the deterministic analysis as demonstrated by Chen 
et al. (2020; 2019), this work investigates the effect of parameter 
uncertainties involved in the physical modelling of landslides. Rel-
evant model input parameters are prescribed with different coef-
ficients of variation (COV, the ratio of standard deviation to mean 
value of a specific random variable): COV = 0.05, 0.10, 0.20, 0.30 as 
listed in Table 4. Note that high COV means that parameters change 
significantly within the study areas. In other words, low COV means 
random variables have less uncertainties, so the probability of 

Fig. 10   Comparison of predicted and actual landslides occurrence under different controlling factors based on the risk level of seismic dis-
placement (Dn): (a) PGA, (b) slope, (c) elevation, (d) lithology, and (e) aspect
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failure is small, and inversely, the corresponding RI is high. Figure 11 
shows the toolbox outputs for RI, and corresponding Pf distribution 
maps considering the uncertainties of the parameters. It can be vis-
ualised from Fig. 11a–d that the variation of the distribution of RIs 
is closely related to the COV of the corresponding parameters. For 
example, with very low variability (COV = 0.05), only 4.3% of the 
landslides have RI values less than zero. Nearly 83.3% of the actual 
landslide area is situated in zones with a very high RI (e.g., RI = 5). 
The Pf distribution maps with COV ranging from 0.05 to 0.30 are 
displayed in Fig. 11e–h. The Pf can be classified into five levels fol-
lowing Lacasse and Nadim (2011) to further analyse the variation 
characteristics of regional slopes under different failure probability 
conditions: I (very low) Pf ≤ 1%; II (low) 1% < Pf ≤ 10%; III (moder-
ate) 10% < Pf ≤ 50%; IV (high) 50% < Pf ≤ 90%; and V (very high) 
Pf ≥ 90%. The Pf distribution maps vividly demonstrate that the 
area of high risk landslides increases remarkably with parameters’ 
COV. Note that the phenomenon is actually reflecting the nature 
of uncertainty and probability analysis: when an area is subjected 
to large variability, i.e., high COV values, the expected probability 
of failure will increase. In general, the more unknown involved in 
physical modelling, the larger possibilities of failure.

To further explain the influence of different levels of param-
eter COV on the accuracy of landslide susceptibility prediction 
using the GIS-FORM toolbox, the graphical results of Fig. 11 can be 

lumpily expressed using the probability of detection plots (PoD) 
or true positive ratio (TPR), true negative ratio plots (TNR), and 
balance accuracy. The mathematical definitions of PoD (TPR) and 
TNR as well as balance accuracy are given below (Chuang et al. 2021; 
Mathew et al. 2008):

where TP denotes the true positive which means the landslides 
occurred and the occurrence of landslides was predicted based on a 
certain index, FN denotes the false negative which means there were 
actual landslides occurring but no landslides predicted, TN denotes 
the true negative which means there were no landslides occurred 
as well as no landslides predicted, and FP denotes the false posi-
tive which means there were no actual landslides occurring but the 
occurrence of landslides was predicted. In this study, we evaluated 
the PoD and TNR change with respect to the landslide threshold 
of Pf as an index. As shown in Fig. 12a, the PoD value increases with 

(8)PoD(TPR) =
TP

TP + FN

(9)TNR =
TN

TN + FP

(10)Balance accuracy =
TPR + TNR

2

Fig. 11   RI and Pf based on static FoS under different COVs
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the decrease of the prescribed threshold value for Pf. Nevertheless, 
the TNR value presents the opposite trend which increases with 
the threshold value of Pf as shown in Fig. 12b. For regional land-
slide susceptibility management, the prescribed threshold can to 
some extent reflect the acceptable risk level. For example, a land-
slide having a probability of failure more than 5% (a prescribed 
threshold) is defined as positive, then the acceptable risk level is 
Pf = 5%. Comparing the PoD or TNR curves under different model 
parameters’ COV, it seems the GIS-FORM toolbox works better 
(e.g., both PoD and TNR are above 0.65) when the COV and the 

prescribed threshold values lie in the ranges of 0.2 to 0.3 and 0.2 to 
2.8% as shown in Fig. 12c, respectively. Thus, the two indexes PoD 
and TNR can be tentatively used to tune the model parameters. In 
the literature, most soil properties are reported with COV ranging 
from 0.1 to 0.5. Therefore, the proposed GIS-FORM toolbox may 
have a great potential for use in conducting landslide susceptibility 
prediction in those soil regions.

We further investigated the performance of the toolbox for  
landslides prediction, considering the uncertainty of 
the parameters. For instance, the slope is investigated as  

Fig.12   (a) Probability of detection (PoD), (b) true negative rate (TNR), and (c) balance accuracy w.r.t. probabilistic threshold of landslide (Pf) 
under different COVs
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a represented factor. The calculated results  of the GIS-FORM land-
slide prediction toolbox considering different COVs are shown in 
Fig. 13. The absolute error abovementioned is used to identify the 
trend between estimated and determined landslides (the dotted 
line diagram). The error fluctuation of the most likely landslide 
case (Pf ≥ 90%) is observed to change from the most significant 
to the least significant when the COV increases from 0.05 to 0.30. 
The lowest sensitivity area shows a diametrically opposite trend. 
This also reflects to some extent that the predicted landslide areas 
become increasingly accurate with the parameter variability 
increasing. In other words, the uncertainty of the parameters is  
clearly of great significance for the regional hazard assessment.

The distribution of RI and the corresponding variation of Pf 
were further calculated for the region-wide critical accelerations 
to study the influence of parameter uncertainty considered as the 
dynamic factor (i.e., seismic), as shown in Fig. 14a. Compared with 
Fig. 11, most of the actual landslides located in the region of RI 
belong to the low critical acceleration range, even though they are 
at the lower COV (i.e., 0.05). This is significantly different from 
the RI distribution of the FoS under static conditions. The area of 
the excellent stable region (RI ≥ 5) decreases rapidly from 45.2 to 
0.04%, increasing the COV for the whole study area. Further, more 
landslide location points fall in the high sensitivity area (red area, 

low RI). Additionally, the distribution of yield acceleration at dif-
ferent COVs can be obtained according to Pf’s classification of the 
region risk level. The probability of the actual landslide falling in 
the high-risk area (IV-ac, V-ac) according to the ac varies with the 
increase of the COV, as shown in Fig. 14b. For comparison, similar 
high-risk classification results (IV-FoS, V-FoS) obtained based on 
the FoS were counted again. Overall, the landslides in the IV risk 
level area gradually prevail with increasing the COV regardless of 
using the FoS or ac. However, about 82.6% of the coseismic-induced 
landslides were observed as situated in the landslide height sus-
ceptibility based on the benchmark of the probabilistic analysis 
for yield acceleration. This indicates a better effect than only 5.5% 
assessed using the FoS. Accordingly, the potential of adopting the 
GIS-FORM landslide prediction toolbox to estimate earthquake-
induced landslides is more superior.

Further discussion

Although FORM utilising the HLRF_x algorithm has been success-
fully proposed and applied in conducting probabilistic analysis of 
complex geotechnical problems via standalone numerical pack-
ages (Ji and Kodikara 2015), it has not been utilised in landslide 
prediction works at a regional scale. In the GIS environment, the 

Fig. 13   Absolute error of slope-based comparison between predicted and actual landslides under different risk levels of Pf: COV = (a) 0.05, (b) 
0.10, (c) 0.20, and (d) 0.30

Landslides 19 & (2022) 2227



Technical Note

dominant barrier is the huge amount of data exchange. Since the 
probabilistic FORM algorithm involves iterative calculation process, 
the existing conventional operation, namely the calculation in layers, 
makes it extremely difficult to complete this process in ArcGIS. In 
this work, although the HLRF_x-based approach was successfully 
implemented in the GIS environment via Python, some key prob-
lems and limitations are still presented for in-depth investigations.

Our comparison of the GIS-FORM landslide prediction outputs 
with GIS-TISSA outputs (Escobar-Wolf et al. 2021) reveals that the 
GIS-FORM can more precisely capture the probability of landslides 
under complete statistical information in the infinite slope model. 
Hence, the GIS-FORM offers a superior way of producing regional 
seismic-triggered landslide susceptibility in the GIS platform, 
which is user-friendly and less labour-intensive. The developed 
toolbox is certainty extremely convenient for engineers unfamiliar 
with the details of calculation procedures.

The practicality and generalisability of the model and 
approaches (i.e., infinite slope model, HLRF_x, Newmark analysis) 
were verified based on a typical case of the coseismic landslides 
triggered by the 2017 Jiuzhaigou Ms 7.0 earthquake. Note that it 
takes approximately 90 min to complete the iterative calculation of 
3,450,001 grid points based on the 12.5-m resolution DEM compared 
with the 30-min calculation of 598,829 grid points. Comprehen-
sively, three main landslide factors (i.e., the seismic, the terrain, 
and the geologic information) were used for further exploration. 
The absolute error analysis was employed in this work to verify the  
prediction accuracy of the toolbox under different landslide factors. 
The distribution trends of error belonging to diffident landslide 
factors were compared for different risk levels based on the per-
manent displacement classification. As demonstrated in Fig. 10, the 
error of medium risk area (i.e., susceptibility level III) was found 
to be smaller than the errors of other risk areas. This implies that 
the area with seismic displacement greater than 15 cm is the high-
frequency area of landslide. Additionally, the apparent gap between 
landslides in the high-risk area (Pf ≥ 50%) and low-risk area is more 

obvious when COV is 0.30. In other words, the extent of possible 
landslides is directly affected by the variability of geotechnical 
parameters, indicating the necessity of uncertainty analysis in 
landslide susceptibility mapping. In summary, compared with 
other qualitative methods, the GIS-FORM landslide prediction is  
feasible and more effective.

One of the main limitations of this work is that the uncertainty 
of the pore water pressure varying with rainfall penetration, which 
is a remarkable factor triggering landslides (namely, Hw) at low risk 
of earthquake activities has not been considered. In the literature, 
there have been a great number of studies on the rainfall-induced 
regional landslide analysis. For example, some of these include 
Shallow Landslide Stability Model (SHALSTAB) (Montgomery 
and Dietrich 1994), Stability Index Mapping (SINMAP) (Pack et al. 
1998), Transient Rainfall Infiltration and Grid-based Regional 
Slope-stability analysis (TRIGRS) (Baum et al. 2002, 2008), and 
Shallow Landslides Instability Prediction (SLIP) (Montrasio and 
Valentino 2008). In future, slope stability modelling on the rain-
fall intensity, infiltration, and pore water change mechanisms 
should be carried out to further implement the proposed GIS- 
FORM toolbox for rainfall-induced landslide predictions.

Conclusions

In this study, a GIS toolbox embedding the FORM-based probabil-
ity algorithm was developed and applied successfully to complete 
probabilistic predictions of regional-scale landslide susceptibility in 
seismic areas. By probabilistic physical modelling of the infinite slope 
stability, the toolbox can fully consider the statistical information of 
uncertain parameters contributing to the probability of landslide. 
Two major features of the GIS-FORM toolbox are as follows: (1) for 
static load conditions, the factor of safety model was probabilistically 
evaluated using a rapid iteration algorithm called HLRF-x and (2) for 
earthquake-triggered landslide susceptibility analysis, the Newmark 
displacement models were adopted.

Fig. 14   Probabilistic analysis results: (a) RI and Pf based on critical acceleration (ac) under different COVs, (b) landslide proportion

Landslides 19 & (2022)2228



In terms of the deterministic FoS calculation, a comparison of 
the GIS-FORM results with those from GIS-TISSA was made in  
this study, and the difference is almost negligible in an accept-
able range (10e-5). When the statistical uncertainties of some  
basic inputs are taken into account, the landslide susceptibility pre-
dictions obtained by the GIS-FORM are distinctly different from 
GIS-TISSA, the latter integrated with a much weaker reliability 
analysis tool called the FOSM. The versatility of the proposed 
GIS-FORM for landslide susceptibility prediction is that all the 
fundamental statistical information of multiple random varia-
bles can be simulated, including the statistical distribution type, 
the mean value, standard deviation, and the cross-correlation 
between random variables.

Furthermore, the coseismic landslide records subject to the Ms 
7.0 Jiuzhaigou earthquake were adoptedied to verify the calculated 
landsliding areas with proper assumptions of parameter uncertain-
ties, using the proposed GIS-FORM tool racticality for the rapid 
landslide hazard assessment landslides areas. The results indicated 
that the landslide susceptible based on probabilistic-modelling 
analysis has high accuracy as compared with the recorded failures, 
which demonstrated the applicability of our proposed method.

Overall, the developed GIS-FORM tool as an extension of 
ArcGIS 10.6 software is feasible and effective in performing the 
earthquake-induced landslide susceptibility analysis. In this way, 
the landslide susceptibility analysis considering the probabilis-
tic framework can generate more precise and physical model-
dependent landslide susceptibility maps for the disaster reduc-
tion target. We expect that the GIS-FORM landslide prediction 
toolbox based on the FORM probability algorithm will enhance 
our ability to evaluate seismic-triggered landslide susceptibil-
ity on regional scale and increase awareness of landslide haz-
ards (Ji et al. 2019a, b). In the future, relevant research should 
be further carried out to implement the physically based slope 
stability model and engineering reliability algorithm to rainfall-
induced regional landslide susceptibility predictions.
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